Dataset validation
Specify the dataset schema within the Actors so you can add monitoring and validation at the field level.
To define a schema for a default dataset of an Actor run, you need to set fields
property in the dataset schema.
The schema defines a single item in the dataset. Be careful not to define the schema as an array, it always needs to be a schema of an object.
Schema configuration is not available for named datasets or dataset views.
You can either do that directly through actor.json
:
{
"actorSpecification": 1,
"storages": {
"dataset": {
"actorSpecification": 1,
"fields": {
"$schema": "http://json-schema.org/draft-07/schema#",
"type": "object",
"properties": {
"name": {
"type": "string"
}
},
"required": ["name"]
},
"views": {}
}
}
}
Or in a separate file linked from the .actor.json
:
{
"actorSpecification": 1,
"storages": {
"dataset": "./dataset_schema.json"
}
}
{
"actorSpecification": 1,
"fields": {
"$schema": "http://json-schema.org/draft-07/schema#",
"type": "object",
"properties": {
"name": {
"type": "string"
}
},
"required": ["name"]
},
"views": {}
}
Dataset schema needs to be a valid JSON schema draft-07, so the $schema
line is important and must be exactly this value or it must be omitted:
"$schema": "http://json-schema.org/draft-07/schema#"
Dataset validation
When you define a schema of your default dataset, the schema is then always used when you insert data into the dataset to perform validation (we use AJV).
If the validation succeeds, nothing changes from the current behavior, data is stored and an empty response with status code 201
is returned.
If the data you attempt to store in the dataset is invalid (meaning any of the items received by the API fails validation), the entire request will be discarded, The API will return a response with status code 400
and the following JSON response:
{
"error": {
"type": "schema-validation-error",
"message": "Schema validation failed",
"data": {
"invalidItems": [{
"itemPosition": "<array index in the received array of items>",
"validationErrors": "<Complete list of AJV validation error objects>"
}]
}
}
}
The type of the AJV validation error object is here.
If you use the Apify JS client or Apify SDK and call pushData
function you can access the validation errors in a try catch
block like this:
- Javascript
- Python
try {
const response = await Actor.pushData(items);
} catch (error) {
if (!error.data?.invalidItems) throw error;
error.data.invalidItems.forEach((item) => {
const { itemPosition, validationErrors } = item;
});
}
try:
await Actor.push_data(items)
except ApifyApiError as error:
if "invalidItems" in error.data:
validation_errors = e.data["invalidItems"]
Examples of common types of validation
Optional field (price is optional in this case):
{
"$schema": "http://json-schema.org/draft-07/schema#",
"type": "object",
"properties": {
"name": {
"type": "string"
},
"price": {
"type": "number"
}
},
"required": ["name"]
}
Field with multiple types:
{
"price": {
"type": ["string", "number"]
}
}
Field with type any
:
{
"price": {
"type": ["string", "number", "object", "array", "boolean"]
}
}
Enabling fields to be null
:
{
"name": {
"type": "string",
"nullable": true
}
}
Define type of objects in array:
{
"comments": {
"type": "array",
"items": {
"type": "object",
"properties": {
"author_name": {
"type": "string"
}
}
}
}
}
Define specific fields, but allow anything else to be added to the item:
{
"$schema": "http://json-schema.org/draft-07/schema#",
"type": "object",
"properties": {
"name": {
"type": "string"
}
},
"additionalProperties": true
}
See json schema reference for additional options.
You can also use conversion tools to convert an existing JSON document into it's JSON schema.
Dataset field statistics
When you configure the dataset fields schema, we generate a field list and measure the following statistics:
- Null count: how many items in the dataset have the field set to null
- Empty count: how many items in the dataset are
undefined
, meaning that for example empty string is not considered empty - Minimum and maximum
- For numbers, this is calculated directly
- For strings, this field tracks string length
- For arrays, this field tracks the number of items in the array
- For objects, this tracks the number of keys
- For booleans, this tracks whether the boolean was set to true. Minimum is always 0, but maximum can be either 1 or 0 based on whether at least one item in the dataset has the boolean field set to true.
You can use them in monitoring.