Integration with data libraries
The Apify client for Python seamlessly integrates with data analysis libraries like Pandas. This allows you to load dataset items directly into a Pandas DataFrame for efficient manipulation and analysis. Pandas provides robust data structures and tools for handling large datasets, making it a powerful addition to your Apify workflows.
The following example demonstrates how to retrieve items from the most recent dataset of an Actor run and load them into a Pandas DataFrame for further analysis:
- Async client
- Sync client
import asyncio
import pandas as pd
from apify_client import ApifyClientAsync
TOKEN = 'MY-APIFY-TOKEN'
async def main() -> None:
    # Initialize the Apify client
    apify_client = ApifyClientAsync(token=TOKEN)
    actor_client = apify_client.actor('apify/web-scraper')
    run_client = actor_client.last_run()
    dataset_client = run_client.dataset()
    # Load items from last dataset run
    dataset_data = await dataset_client.list_items()
    # Pass dataset items to Pandas DataFrame
    data_frame = pd.DataFrame(dataset_data.items)
    print(data_frame.info)
if __name__ == '__main__':
    asyncio.run(main())
import pandas as pd
from apify_client import ApifyClient
TOKEN = 'MY-APIFY-TOKEN'
def main() -> None:
    # Initialize the Apify client
    apify_client = ApifyClient(token=TOKEN)
    actor_client = apify_client.actor('apify/web-scraper')
    run_client = actor_client.last_run()
    dataset_client = run_client.dataset()
    # Load items from last dataset run
    dataset_data = dataset_client.list_items()
    # Pass dataset items to Pandas DataFrame
    data_frame = pd.DataFrame(dataset_data.items)
    print(data_frame.info)
if __name__ == '__main__':
    main()